

### Ataques Adversariais Comprometendo Sistemas Baseados em Machine Learning

Paulo Freitas de Araujo Filho



## Inteligência Artificial

### Machine Learning

### Ciência de Dados













![](_page_4_Picture_0.jpeg)

![](_page_4_Picture_1.jpeg)

![](_page_4_Figure_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_5_Figure_0.jpeg)

![](_page_5_Picture_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_6_Picture_0.jpeg)

![](_page_6_Picture_1.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_8_Picture_1.jpeg)

![](_page_8_Picture_2.jpeg)

**Adversarial Sample** 

![](_page_8_Picture_4.jpeg)

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

Adversarial Sample

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

![](_page_8_Picture_13.jpeg)

![](_page_8_Picture_14.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Picture_1.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Picture_1.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_12_Figure_0.jpeg)

$$x_{adv} = x + \delta$$
$$\min||x_{adv} - x|| < \rho$$

 $f(x_{adv}) \neq f(x)$ 

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

#### Multi-Objective GAN-Based Adversarial Attack Technique for Modulation Classifiers

Paulo Freitas de Araujo-Filho<sup>®</sup>, Georges Kaddoum<sup>®</sup>, *Senior Member, IEEE*, Mohamed Naili, Emmanuel Thepie Fapi<sup>®</sup>, and Zhongwen Zhu<sup>®</sup>, *Senior Member, IEEE* 

$$f(x_{adv}) \neq f(x)$$
$$\min||x_{adv} - x|| < \rho$$

![](_page_13_Picture_4.jpeg)

- Generative Adversarial Networks (GANs)
  - Treina simultaneamente duas redes neurais que competem entre si
- Gerador *G* 
  - Treinado para produzir amostras sintéticas de dados que sejam reconhecidos para reais
  - Aprende a distribuição de probabilidade de dos dados reais
  - Implicitamente modela o sistema
- Discriminador D
  - Treinado para distinguir as amostras reais daquelas produzidas pelo gerador

![](_page_14_Figure_8.jpeg)

![](_page_14_Picture_9.jpeg)

$$\delta = G(z) \qquad \qquad L_G = -D(x + G(z))$$
$$x_{adv} = x + G(z) \qquad \qquad L_D = D(x + G(z)) - D(x)$$

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

$$L_{G1} = -D(x + G(z))$$
$$L_{G2} = CE(f(x + G(z)), y) = -\sum_{i=1}^{n} y_i \log(f_i(x + G(z)))$$

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

$$L_{G1} = -D(x + G(z))$$
$$L_{G2} = CE(f(x + G(z)), y) = -\sum_{i=1}^{n} y_i \log(f_i(x + G(z)))$$

$$L_G = \alpha L_{G1} + \beta L_{G2}$$

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

 $p(\mathbf{y}|\mathbf{f}^{W}(\mathbf{x})) = Softmax(\mathbf{f}^{W}(\mathbf{x}))$ 

![](_page_19_Picture_2.jpeg)

$$p(\mathbf{y}|\mathbf{f}^{\mathbf{W}}(\mathbf{x})) = Softmax(\mathbf{f}^{\mathbf{W}}(\mathbf{x}))$$

$$\log p(\mathbf{y}|\mathbf{f}^{W}(\mathbf{x})) \propto -\frac{1}{2\sigma^{2}} ||\mathbf{y} - \mathbf{f}^{W}(\mathbf{x})||^{2} - \log \sigma$$

![](_page_20_Picture_3.jpeg)

$$p(\mathbf{y}|\mathbf{f}^{W}(\mathbf{x})) = Softmax(\mathbf{f}^{W}(\mathbf{x}))$$

$$\log p(\mathbf{y}|\mathbf{f}^{W}(\mathbf{x})) \propto -\frac{1}{2\sigma^{2}} ||\mathbf{y} - \mathbf{f}^{W}(\mathbf{x})||^{2} - \log \sigma$$

$$\log p(\mathbf{y_1}, \mathbf{y_2}|\mathbf{f}^W(\mathbf{x})) = p(\mathbf{y_1}|\mathbf{f}^W(\mathbf{x})) \cdot p(\mathbf{y_2}|\mathbf{f}^W(\mathbf{x}))$$

![](_page_21_Picture_4.jpeg)

$$p(\mathbf{y}|\mathbf{f}^{W}(\mathbf{x})) = Softmax(\mathbf{f}^{W}(\mathbf{x}))$$
$$\log p(\mathbf{y}|\mathbf{f}^{W}(\mathbf{x})) \propto -\frac{1}{2\sigma^{2}}||\mathbf{y} - \mathbf{f}^{W}(\mathbf{x})||^{2} - \log \sigma$$

$$\log p(\mathbf{y_1}, \mathbf{y_2} | \mathbf{f}^W(\mathbf{x})) = p(\mathbf{y_1} | \mathbf{f}^W(\mathbf{x})) \cdot p(\mathbf{y_2} | \mathbf{f}^W(\mathbf{x}))$$

$$L(\mathbf{W}, \sigma_{1}, \sigma_{2}) = -\log p(\mathbf{y}_{1}, \mathbf{y}_{2} | f^{W}(\mathbf{x}))$$
  

$$\propto \frac{1}{2\sigma_{1}^{2}} ||\mathbf{y}_{1} - f^{W}(\mathbf{x})||^{2} + \frac{1}{2\sigma_{2}^{2}} ||\mathbf{y}_{2} - f^{W}(\mathbf{x})||^{2} + \log \sigma_{1}\sigma_{2}$$
  

$$= \frac{1}{2\sigma_{1}^{2}} L_{1}(\mathbf{W}) + \frac{1}{2\sigma_{2}^{2}} L_{2}(\mathbf{W}) + \log \sigma_{1}\sigma_{2}$$

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

$$L_{G1} = -D(x + G(z))$$
$$L_{G2} = CE(f(x + G(z)), y) = -\sum_{i=1}^{n} y_i \log(f_i(x + G(z)))$$

$$L_{G} = \frac{1}{2\sigma_{1}^{2}} L_{G1} + \frac{1}{2\sigma_{2}^{2}} L_{G2} + \log(\sigma_{1}\sigma_{2})$$

![](_page_23_Picture_3.jpeg)

$$L_{G1} = -D(x + G(z))$$
$$L_{G2} = CE(f(x + G(z)), y) = -\sum_{i=1}^{n} y_i \log(f_i(x + G(z)))$$

$$L_{G} = \frac{1}{2\sigma_{1}^{2}} L_{G1} + \frac{1}{2\sigma_{2}^{2}} L_{G2} + \log(\sigma_{1}\sigma_{2})$$

$$L_{G} = -\frac{D(x+G(z))}{2\sigma_{1}^{2}} + \frac{CE(f(x+G(z)),y)}{2\sigma_{2}^{2}} + \log(\sigma_{1}\sigma_{2})$$

![](_page_24_Picture_4.jpeg)

• Modificamos a estrutura da GAN e a combinamos com a Multi-Task Loss

![](_page_25_Figure_1.jpeg)

$$L_D = D(x + G(z)) - D(x)$$

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

Algorithm 1 Proposed Adversarial Attack Technique

- 1: Train a GAN according to equations (4) and (5)
- 2: for Each incoming sample x do
- 3: Compute G(z)
- 4: Construct the adversarial sample  $x_{adv} = x + G(z)$
- 5: **end for**

![](_page_26_Picture_7.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_30_Figure_1.jpeg)

| Adversarial Attack Technique | Mean Execution<br>Time per Sample |
|------------------------------|-----------------------------------|
| Technique from [17]          | $20189 \ ms$                      |
| Technique from [11]          | 234 ms                            |
| Our Proposed Technique       | $0.6980 \ ms$                     |

![](_page_30_Picture_3.jpeg)

![](_page_31_Picture_0.jpeg)

 $\sim$ 

# E agora? O que fazer?

• Diminuir a sensibilidade das fronteiras de decisão

![](_page_32_Figure_1.jpeg)

![](_page_32_Picture_2.jpeg)

• Diminuir a sensibilidade das fronteiras de decisão

![](_page_33_Picture_1.jpeg)

![](_page_33_Figure_2.jpeg)

Classification Accuracy Multi-Objective GAN Attack (SNR=10dB)

![](_page_33_Picture_4.jpeg)

• Diminuir a sensibilidade das fronteiras de decisão

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

Classification Accuracy Multi-Objective GAN Attack (SNR=10dB)

![](_page_34_Picture_4.jpeg)

• Combinação de modelos

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

• Remoção de ruído e perturbações adversariais

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_37_Picture_0.jpeg)

### Com grandes poderes vêm grandes responsabilidades!

### **Obrigado!**

### 'TEMPEST'talks

P. Freitas de Araujo-Filho, G. Kaddoum, M. Naili, E. T. Fapi and Z. Zhu, "Multi-Objective GAN-Based Adversarial Attack Technique for Modulation Classifiers," in IEEE Communications Letters, vol. 26, no. 7, pp. 1583-1587, July 2022, doi: 10.1109/LCOMM.2022.3167368.

![](_page_38_Picture_3.jpeg)

Paulo Freitas de Araujo Filho aulo.freitas@tempest.com.br

2022

![](_page_38_Picture_5.jpeg)