
























𝑥𝑎𝑑𝑣 = 𝑥 + δ

min |𝑥𝑎𝑑𝑣 − 𝑥 | < 𝜌

𝑓 𝑥𝑎𝑑𝑣 ≠ 𝑓(𝑥)



min |𝑥𝑎𝑑𝑣 − 𝑥 | < 𝜌

𝑓 𝑥𝑎𝑑𝑣 ≠ 𝑓(𝑥)



● Generative Adversarial Networks (GANs)
○ Treina simultaneamente duas redes neurais que competem entre si

● Gerador 𝐺
○ Treinado para produzir amostras sintéticas de dados que sejam reconhecidos para reais
○ Aprende a distribuição de probabilidade de dos dados reais
○ Implicitamente modela o sistema

● Discriminador 𝐷
○ Treinado para distinguir as amostras reais daquelas produzidas pelo gerador

𝐿𝐺 = −𝐷(𝐺(𝑧))

𝐿𝐷 = 𝐷 𝐺 𝑧 − 𝐷(𝑥)



● Modificamos a estrutura da GAN para que o gerador produza perturbações adversariais

𝐿𝐺 = −𝐷(𝑥 + 𝐺(𝑧))

𝐿𝐷 = 𝐷 𝑥 + 𝐺 𝑧 − 𝐷(𝑥)

𝛿 = 𝐺(𝑧)

𝑥𝑎𝑑𝑣 = 𝑥 + 𝐺(𝑧)



● Modificamos a estrutura da GAN para que o gerador produza perturbações adversariais

𝐿𝐺2 = 𝐶𝐸(𝑓 𝑥 + 𝐺 𝑧 , 𝑦) = − ෍

𝑖=1

𝑛

𝑦𝑖log(𝑓𝑖(𝑥 + 𝐺(𝑧)))

𝐿𝐺 = −𝐷(𝑥 + 𝐺(𝑧))

𝐿𝐷 = 𝐷 𝑥 + 𝐺 𝑧 − 𝐷(𝑥)



● Modificamos a estrutura da GAN para que o gerador produza perturbações adversariais

𝐿𝐺1 = −𝐷(𝑥 + 𝐺(𝑧))

𝐿𝐺2 = 𝐶𝐸(𝑓 𝑥 + 𝐺 𝑧 , 𝑦) = − ෍

𝑖=1

𝑛

𝑦𝑖log(𝑓𝑖(𝑥 + 𝐺(𝑧)))



● Modificamos a estrutura da GAN para que o gerador produza perturbações adversariais

𝐿𝐺1 = −𝐷(𝑥 + 𝐺(𝑧))

𝐿𝐺2 = 𝐶𝐸(𝑓 𝑥 + 𝐺 𝑧 , 𝑦) = − ෍

𝑖=1

𝑛

𝑦𝑖log(𝑓𝑖(𝑥 + 𝐺(𝑧)))

𝐿𝐺 = 𝛼𝐿𝐺1 + 𝛽𝐿𝐺2



● Multi-Task Loss

𝑝(𝒚|𝒇𝑾 𝒙 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒇𝑾(𝒙))



log 𝑝(𝒚|𝒇𝑾 𝒙 ) ∝ −
1

2𝜎2
||𝒚 − 𝒇𝑾(x)||2 − log𝜎

● Multi-Task Loss
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● Multi-Task Loss
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2𝜎1
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=
1
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● Modificamos a estrutura da GAN e a combinamos com a Multi-Task Loss

𝐿𝐷 = 𝐷 𝑥 + 𝐺 𝑧 − 𝐷(𝑥)

𝐿𝐺 = −
𝐷 𝑥+𝐺 𝑧

2𝜎1
2 +

𝐶𝐸 𝑓 𝑥+𝐺 𝑧 ,𝑦

2𝜎2
2 + log(𝜎1𝜎2)
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Fig. 2. Our proposed training model.

given by L G1 and L G2. L G1 represents the task of minimizing

the difference between x and xadv and is given by the original

generator loss, hence L G1 = − D (x + G(z)). L G2 represents

the task of ensuring that x and xadv are assigned to different

classes. It is given by the cross entropy loss between the

class f assigns to xadv and the label of x, hence L G2 =

CE (f (x + G(z)), y), where CE stands for the cross entropy

loss largely adopted in classification problems and y is the

label of x. During training, our technique leverages its access

to the classifier’s decisions to simultaneously optimize its

ability to cause wrong classifications and not being perceived.

While most works that simultaneously learn multiple tasks

manually tune a weighted sum of losses, we leverage the multi-

task loss proposed in [19]. That work uses aleatoric uncer-

tainty, which is a quantity that stays constant for all input data

and varies between different tasks, to simultaneously optimize

any two losses by optimally balancing their contributions as

L =
1

2σ2
1

L 1 +
1

2σ2
2

L 2 + logσ1σ2, (3)

where L 1 and L 2 are any two losses, and σ1 and σ2 are

learnable weights automatically tuned when training a neural

network. Thus, while we train the GAN discriminator with

L D = D (x + G(z)) − D (x), (4)

we combine L G1 and L G2 with equation (3), where L 1 = L G1

and L 2 = L G2, so that our generator loss becomes

L G =
− D (x + G(z))

2σ2
1

+
CE (f (x + G(z)), y)

2σ2
2

+ logσ1σ2.

(5)

Figure 2 shows the training model, and Algorithm 1 shows the

execution steps of our proposed adversarial attack technique.

Algorithm 1 Proposed Adversarial Attack Technique

1: Train a GAN according to equations (4) and (5)

2: for Each incoming sample x do

3: Compute G(z)

4: Construct the adversarial sample xadv = x + G(z)

5: end for

V. METHODOLOGY AND EXPERIMENTAL EVALUATION

We use the RADIOML 2016.10A dataset and VT-CNN2

modulation classifier designed by DeepSiG and publicly avail-

able in [4] and [26] to evaluate our proposed adversarial

attack technique. The dataset is constructed by modulating and

exposing signals to an additive white Gaussian noise (AWGN)

Fig. 3. VT-CNN2 neural network architecture.

Fig. 4. GAN generator architecture.

channel that includes sampling rate offset, random process

of center frequency offset, multipath, and fading effects,

as described in [4] and [26]. Since our technique crafts

adversarial samples on receivers, it is not subject to channel

effects. In future work, we will consider them to enhance our

proposed technique so that it sends adversarial samples over

the air.

After modulation and channel modeling, the signals are

normalized and packaged into 220,000 samples of in-phase

and quadrature components with length 128, each associated

with a modulation scheme and a signal-to-noise ratio (SNR).

SNR is a measure of a signal’s strength. It is the ratio between

the power of the signal and of the background noise, i.e.,

SN R[dB ] = 10log(
Ps i g n a l

Pn o i s e
), where P is the signal power.

Eleven different modulation schemes (eight digital and three

analog) are possible: 8PSK, BPSK, QPSK, QAM16, QAM64,

CPFSK, GFSK, PAM4, WBFM, AM-DSB, and AM-SSB.

Twenty different SNRs, ranging from − 20 dB to 18 dB in

steps of 2 dB, are possible. Twenty percent of the samples are

reserved as a testing set to measure the VT-CNN2 modulation

classifier’s accuracy on clean and adversarial samples.

The VT-CNN2 modulation classifier relies on deep con-

volutional neural networks and classifies samples among the

eleven modulation schemes in the dataset. Figure 3 shows

VT-CNN2’s architecture. Although the softmax layer gives the

probability of membership for each class, we consider the clas-

sifier’s output to be only its final decision, i.e., the modulation

class that has the highest probability. Thus, f (x + G(z)) is the

predicted label of one of the modulation schemes considered.

Finally, Figures 4 and 5 show the GAN’s generator and

discriminator architectures. They were optimized using the

Optuna framework [27], which automatically searches for the

optimal hyper-parameters, and the early stopping mechanism

to avoid overfitting. Table I shows the hyper-parameter values

used in the GAN after tuning. All experiments were conducted

using an AMD Ryzen Threadripper 1920X 12-core 2.2GHz

processor with 64GB of RAM and an NVIDIA GeForce RTX

2080 in a Pytorch environment.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 14,2022 at 11:41:15 UTC from IEEE Xplore.  Restrictions apply.  



● Multi-Objective GAN-Based Adversarial Attack

FREITAS DE ARAUJO-FILHO et al.: MULTI-OBJECTIVE GAN-BASED ADVERSARIAL ATTACK TECHNIQUE 1585

Fig. 2. Our proposed training model.

given by L G1 and L G2. L G1 represents the task of minimizing

the difference between x and xadv and is given by the original

generator loss, hence L G1 = − D (x + G(z)). L G2 represents

the task of ensuring that x and xadv are assigned to different

classes. It is given by the cross entropy loss between the

class f assigns to xadv and the label of x, hence L G2 =
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3: Compute G(z)

4: Construct the adversarial sample xadv = x + G(z)

5: end for

V. METHODOLOGY AND EXPERIMENTAL EVALUATION

We use the RADIOML 2016.10A dataset and VT-CNN2

modulation classifier designed by DeepSiG and publicly avail-

able in [4] and [26] to evaluate our proposed adversarial

attack technique. The dataset is constructed by modulating and

exposing signals to an additive white Gaussian noise (AWGN)

Fig. 3. VT-CNN2 neural network architecture.

Fig. 4. GAN generator architecture.

channel that includes sampling rate offset, random process

of center frequency offset, multipath, and fading effects,

as described in [4] and [26]. Since our technique crafts

adversarial samples on receivers, it is not subject to channel

effects. In future work, we will consider them to enhance our

proposed technique so that it sends adversarial samples over

the air.

After modulation and channel modeling, the signals are

normalized and packaged into 220,000 samples of in-phase

and quadrature components with length 128, each associated

with a modulation scheme and a signal-to-noise ratio (SNR).

SNR is a measure of a signal’s strength. It is the ratio between

the power of the signal and of the background noise, i.e.,

SN R[dB ] = 10 log(
Ps i g n a l

Pn o i s e
), where P is the signal power.

Eleven different modulation schemes (eight digital and three

analog) are possible: 8PSK, BPSK, QPSK, QAM16, QAM64,

CPFSK, GFSK, PAM4, WBFM, AM-DSB, and AM-SSB.

Twenty different SNRs, ranging from − 20 dB to 18 dB in

steps of 2 dB, are possible. Twenty percent of the samples are

reserved as a testing set to measure the VT-CNN2 modulation

classifier’s accuracy on clean and adversarial samples.

The VT-CNN2 modulation classifier relies on deep con-

volutional neural networks and classifies samples among the

eleven modulation schemes in the dataset. Figure 3 shows

VT-CNN2’s architecture. Although the softmax layer gives the

probability of membership for each class, we consider the clas-

sifier’s output to be only its final decision, i.e., the modulation

class that has the highest probability. Thus, f (x + G(z)) is the

predicted label of one of the modulation schemes considered.

Finally, Figures 4 and 5 show the GAN’s generator and

discriminator architectures. They were optimized using the

Optuna framework [27], which automatically searches for the

optimal hyper-parameters, and the early stopping mechanism

to avoid overfitting. Table I shows the hyper-parameter values

used in the GAN after tuning. All experiments were conducted

using an AMD Ryzen Threadripper 1920X 12-core 2.2GHz

processor with 64GB of RAM and an NVIDIA GeForce RTX

2080 in a Pytorch environment.
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given by L G1 and L G2. L G1 represents the task of minimizing

the difference between x and xadv and is given by the original

generator loss, hence L G1 = − D (x + G(z)). L G2 represents

the task of ensuring that x and xadv are assigned to different

classes. It is given by the cross entropy loss between the

class f assigns to xadv and the label of x, hence L G2 =

CE (f (x + G(z)), y), where CE stands for the cross entropy

loss largely adopted in classification problems and y is the
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ability to cause wrong classifications and not being perceived.
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manually tune a weighted sum of losses, we leverage the multi-
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where L 1 and L 2 are any two losses, and σ1 and σ2 are
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We use the RADIOML 2016.10A dataset and VT-CNN2

modulation classifier designed by DeepSiG and publicly avail-

able in [4] and [26] to evaluate our proposed adversarial

attack technique. The dataset is constructed by modulating and

exposing signals to an additive white Gaussian noise (AWGN)
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channel that includes sampling rate offset, random process

of center frequency offset, multipath, and fading effects,

as described in [4] and [26]. Since our technique crafts

adversarial samples on receivers, it is not subject to channel

effects. In future work, we will consider them to enhance our

proposed technique so that it sends adversarial samples over

the air.

After modulation and channel modeling, the signals are

normalized and packaged into 220,000 samples of in-phase

and quadrature components with length 128, each associated

with a modulation scheme and a signal-to-noise ratio (SNR).

SNR is a measure of a signal’s strength. It is the ratio between

the power of the signal and of the background noise, i.e.,

SN R[dB ] = 10 log(
Ps i g n a l

Pn o i s e
), where P is the signal power.

Eleven different modulation schemes (eight digital and three

analog) are possible: 8PSK, BPSK, QPSK, QAM16, QAM64,

CPFSK, GFSK, PAM4, WBFM, AM-DSB, and AM-SSB.

Twenty different SNRs, ranging from − 20 dB to 18 dB in

steps of 2 dB, are possible. Twenty percent of the samples are

reserved as a testing set to measure the VT-CNN2 modulation

classifier’s accuracy on clean and adversarial samples.

The VT-CNN2 modulation classifier relies on deep con-

volutional neural networks and classifies samples among the

eleven modulation schemes in the dataset. Figure 3 shows

VT-CNN2’s architecture. Although the softmax layer gives the

probability of membership for each class, we consider the clas-

sifier’s output to be only its final decision, i.e., the modulation

class that has the highest probability. Thus, f (x + G(z)) is the

predicted label of one of the modulation schemes considered.

Finally, Figures 4 and 5 show the GAN’s generator and

discriminator architectures. They were optimized using the

Optuna framework [27], which automatically searches for the

optimal hyper-parameters, and the early stopping mechanism

to avoid overfitting. Table I shows the hyper-parameter values

used in the GAN after tuning. All experiments were conducted

using an AMD Ryzen Threadripper 1920X 12-core 2.2GHz

processor with 64GB of RAM and an NVIDIA GeForce RTX

2080 in a Pytorch environment.
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Fig. 5. GAN discriminator architecture.

TABLE I

HYPER-PARAMETERS VALUES

VI. RESULTS AND DISCUSSION

As previously mentioned, the goal of adversarial attacks

is to introduce imperceptible perturbations capable of reduc-

ing the accuracy of a modulation classifier. Therefore,

we evaluated our proposed attack technique by measuring

the VT-CNN2’s accuracy on clean and adversarial samples,

and the perturbation-to-noise ratio (PNR). PNR measures the

ratio between the perturbation and noise power levels so

that PN R[dB ] = 10log(
Pp e r t u r ba t i o n

Pn o i s e
), where P is the signal

power. The larger the PNR, the larger the perturbation is

in comparison to the noise, becoming more distinguishable

and more likely to be detected. Perturbations are considered

imperceptible when they are in the same order as or below the

noise level, i.e., PNR < 0 dB.

Figure 6 shows the VT-CNN2’s accuracy versus PNR for

SNRs of 10, 0, and − 10 dB. Without attacks, the classifier

achieves different accuracy depending on the SNR because

larger noises make it harder for the classifier to achieve correct

results. Under our proposed adversarial attack, the classifier’s

accuracy is significantly reduced in all cases. At 0 dB PNR,

our technique reduces the accuracy by 37% for 10 dB SNR,

56% for 0 dB SNR, and 7% for − 10 dB SNR. Our technique

reduces the accuracy more for 0 dB than for 10 dB SNR

because, for signals with the same strength, larger SNRs mean

lower noise levels so that it is more challenging to produce

imperceptible perturbations that still significantly compromise

the accuracy. However, although the noise at − 10 dB SNR is

the highest, allowing our technique to produce larger pertur-

bations, the accuracy reduction is not as significant as at 0 dB

SNR or 10 dB SNR. If f (x + G(z)) in equation (5) gives too

many wrong results regardless of the adversarial perturbation

G(z), it is harder for our technique to find what perturbation

would reduce the classifier’s accuracy the most. Thus, the

fact that our technique relies on the classifier’s decisions

to train the GAN diminishes its capacity to produce wrong

classifications when the classifier’s accuracy is low. Since the

classifier’s accuracy is around only 22% at − 10 dB SNR, the

adversarial perturbations that our proposed technique crafts are

less effective. Nevertheless, our proposed adversarial attack

technique still significantly reduces the classifier’s accuracy.

Fig. 6. Modulation classifier’s accuracy versus PNR with and without our
proposed adversarial attack technique.

Fig. 7. Waveform comparison of a 8PSK signal with SNR=10 dB before
(clean sample) and after (adversarial sample) our proposed adversarial attack.

We further examine the influence of perturbations on signal

waveforms. We verify that the signal waveform after per-

turbation (adversarial sample) is consistent with the original

waveform (clean sample), i.e., amplitude, frequency, and phase

do not significantly change. Thus, while our technique’s per-

turbations mislead the classifier, they are not easily recognized

by human eyes. Figure 7 illustrates the time domain waveform

of an 8PSK signal before and after the perturbation is intro-

duced. Similar results were achieved for the other modulation

schemes considered, such that clean and adversarial sam-

ples always have very similar waveforms without significant

changes in their amplitude, frequency, and phase.

Moreover, we compare our results to those of a jamming

attack, which adds Gaussian noise to signals, and two other

adversarial attack techniques: those proposed in [17] and [11].

Figure 8 shows the VT-CNN2’s accuracy on clean samples

and adversarial samples produced by the jamming attack

and the three adversarial attack techniques evaluated for

SNR = 10 dB. Perturbations introduced by adversarial attacks

are specially crafted to reduce the classifier’s accuracy the

most while not being perceived. Thus, our technique and the

techniques from [17] and [11] are significantly more harmful

than attacks that introduce random noises, such as the jamming

attack. Moreover, our proposed attack technique is the one that

reduces the accuracy the most.

Finally, we evaluate how long it takes for each technique to

craft adversarial samples. Table II shows the mean execution
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Fig. 5. GAN discriminator architecture.

TABLE I

HYPER-PARAMETERS VALUES

VI. RESULTS AND DISCUSSION

As previously mentioned, the goal of adversarial attacks

is to introduce imperceptible perturbations capable of reduc-

ing the accuracy of a modulation classifier. Therefore,

we evaluated our proposed attack technique by measuring

the VT-CNN2’s accuracy on clean and adversarial samples,

and the perturbation-to-noise ratio (PNR). PNR measures the

ratio between the perturbation and noise power levels so

that PN R[dB ] = 10 log(
Pp er t u r ba t i o n

Pn o i s e
), where P is the signal

power. The larger the PNR, the larger the perturbation is

in comparison to the noise, becoming more distinguishable

and more likely to be detected. Perturbations are considered

imperceptible when they are in the same order as or below the

noise level, i.e., PNR < 0 dB.

Figure 6 shows the VT-CNN2’s accuracy versus PNR for

SNRs of 10, 0, and − 10 dB. Without attacks, the classifier

achieves different accuracy depending on the SNR because

larger noises make it harder for the classifier to achieve correct

results. Under our proposed adversarial attack, the classifier’s

accuracy is significantly reduced in all cases. At 0 dB PNR,

our technique reduces the accuracy by 37% for 10 dB SNR,

56% for 0 dB SNR, and 7% for − 10 dB SNR. Our technique

reduces the accuracy more for 0 dB than for 10 dB SNR

because, for signals with the same strength, larger SNRs mean

lower noise levels so that it is more challenging to produce

imperceptible perturbations that still significantly compromise

the accuracy. However, although the noise at − 10 dB SNR is

the highest, allowing our technique to produce larger pertur-

bations, the accuracy reduction is not as significant as at 0 dB

SNR or 10 dB SNR. If f (x + G(z)) in equation (5) gives too

many wrong results regardless of the adversarial perturbation

G(z), it is harder for our technique to find what perturbation

would reduce the classifier’s accuracy the most. Thus, the

fact that our technique relies on the classifier’s decisions

to train the GAN diminishes its capacity to produce wrong

classifications when the classifier’s accuracy is low. Since the

classifier’s accuracy is around only 22% at − 10 dB SNR, the

adversarial perturbations that our proposed technique crafts are

less effective. Nevertheless, our proposed adversarial attack

technique still significantly reduces the classifier’s accuracy.

Fig. 6. Modulation classifier’s accuracy versus PNR with and without our
proposed adversarial attack technique.

Fig. 7. Waveform comparison of a 8PSK signal with SNR=10 dB before
(clean sample) and after (adversarial sample) our proposed adversarial attack.

We further examine the influence of perturbations on signal

waveforms. We verify that the signal waveform after per-

turbation (adversarial sample) is consistent with the original

waveform (clean sample), i.e., amplitude, frequency, and phase

do not significantly change. Thus, while our technique’s per-

turbations mislead the classifier, they are not easily recognized

by human eyes. Figure 7 illustrates the time domain waveform

of an 8PSK signal before and after the perturbation is intro-

duced. Similar results were achieved for the other modulation

schemes considered, such that clean and adversarial sam-

ples always have very similar waveforms without significant

changes in their amplitude, frequency, and phase.

Moreover, we compare our results to those of a jamming

attack, which adds Gaussian noise to signals, and two other

adversarial attack techniques: those proposed in [17] and [11].

Figure 8 shows the VT-CNN2’s accuracy on clean samples

and adversarial samples produced by the jamming attack

and the three adversarial attack techniques evaluated for

SNR = 10 dB. Perturbations introduced by adversarial attacks

are specially crafted to reduce the classifier’s accuracy the

most while not being perceived. Thus, our technique and the

techniques from [17] and [11] are significantly more harmful

than attacks that introduce random noises, such as the jamming

attack. Moreover, our proposed attack technique is the one that

reduces the accuracy the most.

Finally, we evaluate how long it takes for each technique to

craft adversarial samples. Table II shows the mean execution
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Fig. 1: The training process of a denoising autoencoder with an example from CIFAR-10.

benign testing set, it represents the percentage of the correctly

classified benign examples being flagged as adversarial. All

evaluations on benign examples are based on the entire testing

set with 10, 000 images.

I I I . MODEL DENOISING ENSEMBLE DEFENSE

Wedesign the model denoising ensemble defense as thefirst

perimeter of defense to prevent adversarial misclassification.

The defense structure consists of multiple DNN denoisers,

each performs noise reduction via unsupervised learning using

one specific denoising autoencoder, aiming to remove adver-

sarial perturbations as much as possible by joint force.

A. Denoising Autoencoders

Denoising autoencoders are initially proposed as a way to

extract and compose robust features which can be utilized to

replace and optimize the random initialization and bootstrap

the efficiency of training deep neural networks [17]. From a

manifold learning perspective [11], natural high-dimensional

data concentrate close to a nonlinear low-dimensional man-

ifold. Adversarial attacks can be considered as a malicious

process to drag benign examples away from the manifold

where they concentrate. DNN denoising training is to learn a

function to map a corrupted example, likely to be outside and

farther from the manifold, back to its uncorrupted form. Thus,

we can utilize denoising autoencoders, trained with uniformly

corrupted examples, to reverse the adversarial perturbation

process such that the adverse effect can be removed. Several

efforts [18], [19] havebeen proposed to perform image denois-

ing tasks with different DNN models and different design of

autoencoder structures and hyperparameters. For image data, a

denoising autoencoder takes an input image, transforms it into

a noisy version, and feeds the noisy image to the autoencoder

to perform latent space projection and then reconstructs the

image with the goal of generating a clean version of the

original image as the output. Figure 1 illustrates, by example,

the key components of training a denoising autoencoder.

Let x be an example from the training set and x̃ be

the version corrupted by a stochastic noise mapping q such

that x̃ ⇠ q(x̃ |x ) [20]. The encoder is an L f -layer neural

network, which projects the corrupted example x̃ from a

high-dimensional image space to a low-dimensional latent

feature space, producing its latent representation f ✓(x̃ ) =

f L f (· · · (f 2(f 1(x̃ ;✓1);✓2));✓L f
) where f i is the operation at

the i -th encoding layer (e.g., convolution) with weights ✓i , f ✓
and ✓= (✓1, ...,✓L f

) can be viewed as the composite function

of the encoder and the weights respectively. The decoder, an

L g-layer neural network, then restores the spatial structure

of f ✓(x̃ ) by mapping its latent representation back to the

original image feature space and produces the reconstructed

example g✓0(f ✓(x̃ )) = gL g (· · · (g2(g1(f ✓(x̃ );✓0
1);✓0

2));✓0
L g

)

where gi is the operation at the i -th decoding layer (e.g.,

deconvolution) with weights ✓0
i , g✓0 and ✓0 = (✓0

1, ...,✓0
L g

)

can be viewed as the composite function of the decoder and

the weights respectively. The multilayer encoder and decoder

constitute a deep denoising autoencoder. Given N training

examples { x 1, ..., x N } , the denoising autoencoder is trained

by backpropagation to minimize the reconstruction loss:

L (✓,✓0
; { x i }

N
i = 1 , d, q, { f

i
}

L f

i = 1 , { g
i
}

L g

i = 1 , λ )

=
1

N

NX

i = 1

d(x i , g✓0(f ✓(x̃ i ))) +
λ

2
(||✓||2F + ||✓0

||
2
F),

(2)

where d is a distance function and λ is a regularization hyper-

parameter penalizing the Frobenius norm of ✓and ✓0. Given

a query example x at runtime, the denoising autoencoder

produces a denoised version D(x ) = g✓0(f ✓(x )) with fixed

weights (✓,✓0).

B. Strategic Teaming of Multiple DNN Denoisers

Recall in Figure 1 that the noise injection function q

of a denoising autoencoder transforms the original input x

to a noisy version of x , denoted by x̃ . Clearly, different

data corruption methods produce different versions of input

x and result in denoisers that exhibit different denoising

effects. Figure 2 visualizes two testing examples from MNIST

and CIFAR-10 and the corresponding adversarial examples

generated by six attack methods (the 1st row), their denoised

versions produced by two denoisers trained with Gaussian

noise (the 2nd row) and salt-and-pepper noise (the 3rd row)

respectively. The predicted class label and confidence by

the target model are presented for each case. On the first

row, it shows that adversarial attacks successfully fool the

target model under all six attacks for the examples from both

datasets. On the second row, Gaussian denoiser successfully

remove malicious perturbations from four out of six attacks

for MNIST example and three out of six attacks for CIFAR-

10 example, showing the robustness improvement of the target

model even with single DNN denoiser. On the third row, the

salt-and-pepper denoiser successfully repaired five out of six

attacks for CIFAR-10 example and three out of six attacks

for MNIST example. These examples deliver two important

messages: First, exploiting denoising autoencoders trained






